
AD-Aloe 656 DELAWARE UNIV NEWARK DEPT OF COMPUTER AND INFORMATI--ETC F/0 9/2
PRACTICAL. ISSUES IN HAYING A USABLE LIBRARY OF SOFTWARE SPECIFI--EYC(U)
MAR al R N WEISCHEDEL pFq9at-9-C-0134

UNCLASSIFIED AFOSR-TR-81-0799 ML

END

145 12.8 12.5
a~1. 12111.23

11.8till '='in

1111 1.25RESLO T .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUEA OF ST ANDARDS-1963 A

AFOSR-TR. 8 1 -0 799

.EVEL
Practical Issues in having a usable

Library of Software Specifications*

DEC 1 5 1981

Ralph M. Weischedel H
Department of Computer & Information Sciences

University of Delaware

Newark, DE 19711

*Research sponsored by the Air Force Office of
* Scientific Research, Air Force Systems Command,

USAF, under grants numbered AFOSR-78-3539,
AFOSR-80-0190, and contract no. F 49620-79-C-0131.

. The United States Government is authorized to
riproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
herein.

Ap ved for Publi@ rlease
distribution unlimited.

S /

81 1 4060

*~~~~~ kA.----- . Y

. UNCLASSIFIED
SE;11RITY CLASIFICATION OF "I HIS PAGE (When fDaoloEnterld)!

REPORT DOCUMENTATION PAGE .I READ 1NSTRUCTIO. -'
PM I BEFORE COMPLET'NG FORM

1.REORTBR 1 -2. GOVT ACCESSION NO., 3. RECIP T'S CATALOG NUMBER
? FOSR- Tm- 8 I-0 7 9 9 1A6 O

4. TITLE (and SubtIlte) A S. TYPE OF REPORT & PERIOD COVERED

PRACTICAL ISSUES IN HAVING A USABLE LIBRARY OF
SOFTWARE SPECIFICATIONS I interim technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) III. CONTRACT OR GRANT NUMBER(s)

- AFOSR-80-0190
Ralph M. Weischedel P

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRA ELEMENT PROJECT, TASK

Department of Computer & Information Sciences AREA 6 WORK UNIT NUMBERS

University of Delaware
I

Newark, DE 19711 61102F 2304/A2

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM March, 1981

Boiling AFB 13. NUMBER OF PAGES

Washington, DC 20332 38
14. MONTORING AGENCY NAME & ADDRESSrif dilerent Irom Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISa. DECLASSIFICATION/DOWNGRADING

SCHEDu LE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited

17. D:$TRiBI.TION STATEMENT (of the abstract entered in Block 20, It diflerent from Report)

18 S11=1 E. =N TAIRY NOTES

'S. KEY WORDS (Continue on reverse side it necessary and identify by block number)

library of specifications, formal specification methodology, English
specifications, documentation, understandability, SPECIAL, abstract data
types

2C. ABS- ACT eContlnuo on reverse side If necessary and Identity by block number)

Though Lormal specifications of software modules offer much toward the

design problems of large software systems, creating formal specifications is
very difficult, requiring much upfront effort. This paper examines a common
idea for dealing with the high cost of software, but in the context of
specification. That idea is a pool or "library" of specifications, so that it
is easy to build on the work of others. Unlike other efforts that have
concentrated on technical problems in having such a library,, this paper identi-I

fies and studies several common sense requirements on such a library being* ocnrtdo ehia rbesi aigsc irrti ae idni

DD i F i73 1473 EDITION OF 1 NOV 6S IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (*%on Data Entered)

.,

UNCLASSIFIED
SEC-R'Y C .ASSIFIC.. eAGE(Ilhen Date Ens.r.e)

ITEM #20, CONTINUED:
effectively used. Such issues are closer related to human factors than to
technical problems; yet these are clearly as critical in use as technical
issues.

Our conclusions have arisen from two studies. In one, we wrote several I
module specifications in the form that might appear in a library. The
modules varied in complexity from a stack to the kernel of a text editor; the
text editor specifications ranged in length from 9 to 28 pages including
copious coments as in-line documentation. The second study compared portions;
of the English and formal specifications of KSOS (Ford Aerospace, 1978), the
Kernelized Secure Operating System.

An example of the kind of library entry we recommend is included in
an appendix.

Many of the suggestions are not new ideas, but are .merely common sense.
In that sense, the paper may be viewed as rather tutorial about writing
correct, understandable formal specifications for others to use in their
system design.

j ,
UNCLASSIFIED

SgCURITY CLASSIFICATION OF , &G(WhOn Data E*1oo)

d' ' -*.--;'

Abstract

Though formal specifications of software modules offer much

toward the design problems of large software systems, creating

formal specifications is very difficult, requiring much upfrontI

effort. This paper examines a common idea for dealing with the

high cost of -software, but in the context of specification.

That idea is a pool or "library" of specifications, so that it

is easy to build on the work of others. Unlike other efforts

that have concentrated on technical problems in having such a

library, this paper identifies and studies several common sense

requirements on such a library being effectively used. Such

issues are closer related to human factors than to technical

problems; yet these are clearly as critical in use as technical

issues.

Our conclusions have arisen from two studies. In one, we

wrote several module specifications in the form that might ap-

* pear in a library. The modules varied in complexity from a

stack to the kernel of a text editor; the text editor specifica-

tbons ranged in length from 9 to 28 pages including copious com-

ments as in-line documentation. The second study compared por-

tions of the English and formal specifications of KSOS (Ford

Aerospace, 1978), the Kernelized Secure Operating System.

An example of the kind of library entry we rjoaend is

I' included in an appendix

Many'of the sugsinaenot new ideas, but are merely
common sense. in that sense the paper may be viewed as rather

tutoialabout writing correct, understandable formnal specifications

fo other to us ntersse ein

-2-

1. Introduction

The technique of formal module specifications seems to

offer much toward alleviating many problems of large software

systems (those systems requiring at least 25 programmers for

development and at least 30,000 lines of source code). The high

cost of software maintenance, the predominance of design errors,

the difficulty in modifying software, and the difficulty and

cost of diagnosing and correcting design errors are some of the

problems addressed by formal specifications based on the

informatinn-hiding principle. Yet, the creating of formal

specifications is very difficult, requiring much upfront effort.

For instance, Parnas (1976, p. 7) states, "Experience has shown

that the effort involved in writing the set of specifications

can be greater than the effort it would take to write one com-

plete program."

An oft proposed idea for reducing costs in creating

software is to have a library so that specifications, programs,

etc. may be reused from previous projects, rather than being

created from scratch. Naturally, the mechanism of hierarchical-

ly constructing larger and larger module specifications from

smaller ones is available in the formal languages (e.g. Guttag,

et al., 1978 and Roubine and Robinson, 1976). Furthermore,

Cooprider (1979) has investigated what information must be

recorded to store a family of versions of a hierarchically de-

fined system.

However, we have found that several practical issues arise

if a software designer is to draw on a collection of modules

written o others in the course of their designing other

,A:

-3-

systems. For example, if several general types of text editors

exist in the collection, the designer must be able to

a) retrieve the specifications relevant to the need,

b) understand the alternatives quickly to identify which,

if any, best suits the current need, and

c) modify the closest alternative, if necessary, to meet

the specific needs at hand.

Consequently, not only must each specification in the collection

be highly understandable and modifiable, but also the number of

logical alternatives for a given task such as text editing must

be fairly small. These conditions must hold for effective,

timely use of previously written specifications compared to sim-

ply creating them from scratch.

We have found in our examples that only a handful of alter-

natives are necessary to cover a given need, if. several princi-

ples we found are followed.

1.1 Our Point of View and Use of Terminology

Since the meaning of module, design, specification, and

library is nften in the eye of the benolder, we outline our use

of them here. By module we mean a system or subsystem. This is

not the same as an abstract data type (Guttag, 1980), since a

compiler is a module but does not define a data type. Hence,

all abstract data types are modules, but a module is more gen-

eral than "an abstract data type.

By design we mean the decompositinn of a large system into

precisely defined modules. In the design methodology advocated

(Parnas (1972), Robinson, et.al. (1977) and others), a module

-4-

specification defines precisely the interface of a module by

detailing exactly what each function at the interface of a

module does without committing oneself to any particular imple-

mentatinn.

The kind of library considered here would be a reference

collection of module specifications for designers to browse

through. For any given need, such as a file management module,

the library would contain a number of alternative specifications

ranging through the spectrum of functional capabilities a file

management module might offer. Ideally, sophisticated tools

would be available for a designer to easily knit specifications

of various modules together into a complete system specifica-

tion; however, we have not addressed development of such tools.

Our interest in formal specifications in this paper is in

their use as a precise, unambiguous design document detailing

the interfaces of modules of large systems. Therefore, our

interest here is in their communication aspects among venple
since designers must select intelligently among alternative

specifications in the library.

-.2 Basis for Suggestions

Our suggestions arise from two studies. The first involved

creating a collection of specifications as might appear in a

library. Several data structures including two kinds of stacks,

four kinds of queues, and binary trees were specified. In addi-

tion, the functional capabilities of three classes of text edi-

tors were specified by us. The text editor specifications

ranged from 9 to 28 pages including copious comments documenting

them. In addition, implementations were written for each of the

~-5-

modules specified except one of the text editors.

The second study has involved comparing sections of the

English specification and the formal specification of KSOS (Ford

Aerospace, 1978), the kernel of a secure operating system. One

emphasis here has been comparing the means of conveying informa-

tinn, its organization, and the type of information in the for-

mal language and in English. KSOS was chosen, since it is one

of the largest, most complex systems that has ever been formally

specified and since both types of specifications are available

for it.

2. Prospects for a Library nf Formal Specifications

There are six issues to consider in the feasibility of such

a library. Understandability is so critical that we consider it

separately in section 3. The others are discussed in sections

2.1-2.5.

Appendix II presents a definition of a stack module (called

stackl) which will serve as an example in our discussion. They

are written in SPECIAL (Roubine and Robinson, 1976); a brief

description of that language appears in Appendix I.

2.1 Modifiability nf a Specification

Given that the most appropriate specification is found, it

may nnt be a perfect match tn the designer's needs. In that

case, the more easily the specification can be modified to suit

those needs exactly, the better. Two commnnsense techniques are

important.

1) The first is to structure the definitinns of each

function at the interface'of a module so that each particular

K .4

* T

-6-

detail that might need modification is localized in only one

subdefinition. Then only one subdefinition need be changed

rather than the changes being spread throughout the -specifica-

tion. (This is just the notion of abstraction.) For instance,

suppose one is defining a search operation for a text editor,

where the search pattern is a limited form of regular expres-

sion. By abstraction, one can give a toplevel definition, lo-

calizing the definitions of the syntax and semantics of patterns

in a way that makes them very modifiable. The details of this

example appear in Weischedel (1979).

2) The author of the specification should list the

decisions that are arbitrary and depend on the environment in

which the module will be used. As an example in the module

stackl, only the top stack element can be removed; the documen-

tation describes the change to make any stack element retriev-

able. Section E of the documentation in Appendix II lists this

information.

These two well-known principles will make the prototypes in

the library rather modifiable.

2.2 Number of Prototypes

For any particular type of module needed, the ideal would

be that a handful of prototypes would cover the major possibili-

ties for a given need, so that the designer can quickly ascer-

tain which, if any, fits best. If there are many prototypes

necessary for each application, then the time spent analyzing

each one will make using the library prnhibitive.

In our study of data structures and text editors, a handful

of prntotypes seem adequate. Even if the instances below are

i4

~-7-

off by a factor of two in the number of variations needed, the

fact that only a handful suffice means that the number of prnto-

types to be examined is not prohibitive.

For a stack, two versions seem necessary: one from which

one can read only the last item stored, and one permitting any

value designated by a movable pointer to be read, but not modi-

fied.

For a queue, we suggest four variations: one where reading

occurs at only the front, a priority queue, and two character

streams. In a priority queue, the first entered of the largest

values (highest priority) is read or removed from the sequence

before any others; no other values can be read. Character

streams enable the details of synchronizing input/output opera-

tions to be hidden in the module rather than forcing all pro-

grams to be aware of the means of synchronization. One of the

character streams is character oriented; the other is oriented

to lines or variable-length blocks of characters.

For trees, we suggest two variations: the binary tree and

the general tree with arbitrarily many branches. We do not con-

sider a threaded tree a third logical variation, since it is an

implementation of a fast means of performing tree traversal, an

operation specified at the interface of the module. Therefore,

though implementations using thread links affect performance,

they do not change the functional capability.

For. ext editors, we found three logical alternatives. One

has operations oriented to adding, aeleting, or moving charac-

ters. Another has operations oriented to lines and line

numbers. The third example is an editor whose operations are

. .

-8-

oriented to moving a cursor on a CRT screen and editing via

changing the screen.

Three principles which emerged from specifications we wrote

should cut down on the number of alternatives necessary for any

given application, if the principles are followed in writing a

new entry for the library.

1) Select a consistent set of decisions for those details

that depend on the module's use in practice and make those

decisions easy to modify using the two suggestions in section

2.1.

2) Avoid issues that are not fundamental to the logical,

functional capabilities of the module. Those differences would

multiply the number of entries for a given application in the

library without adding any new abilities. For instance, in

specifying text editors, we did not define a user command

language, for there are many legitimate syntactic variations,

each of which will be of varying value to different user commun-

ities.

3) Specify many fundamental, primitive operations to give

each prototype a maximal number of basic features. A designer,

after selecting a specification from the library, can delete

operations from the interface not needed in his/her environment,

assuming that each operation was defined using information-

hiding as stated in principle (1). For instance, our specifica-

tion of a line-nriented editor was patterned after a subset of

the functional capabilities of SOS (National Institute of

Health, 1977). Operations corresponding to the alter mode,

where the user can modify a range of lines using character-

-9-

oriented operations relative to a pointer, can easily be re-

moved. A second example is in Appendix II, the stack module

with a movable pointer for retrieving values at that position.

Six pointer movement operations are included; any may be re-

moved.

In conclusion, we have insufficient evidence to extrapolate

beyond the domain of data structures and medium-sized software

tools such as text editors. As the size of the module grows, it

is not clear that only a handful of prototypes will be suffi-

cient. Nevertheless, the fact that so few sufficed in those two

domains is quite encouraging.

2.3 Contents of a Library Entry

First, we consider the type of documentation for any given

formal specification in the library; then we consider whether

implementations can be stored as well.

The documentation with the entry is critical, not only for

understandability, but also for the designer to be able to

quickly eliminate entries that are not close to his/her need.

Then, the designer can focus attention on two or three that are

most promising. Otherwise, the library would bog designers down

on issues that should be resolved quickly. Five types of infor-

mation seem valuable for quickly deciding on the relevance of a

module specification. (Appendix II contains this documentation

as well as the formal specification.)

1) One is a description of the purpose of the module and

the kinds of needs it fills.

2) A second is a summary description of each class of

functional capabilities the system has. Notice that this kind

-10-

of information is not stated explicitly in formal specification

languages, but is implied. Fnr instance, in Appendix II the

English summary "Description" states explicitly that the first

pointer operatinn must be either set pointertop or

set pointer bottom. This is implied by the formal specifica-

tion, though not stated explicitly, since otherwise the pointer

is undefined (the "?").

3) Third, the kinds of decisions not made ty Ihe module

should be described; these are implementation issues which would

have to be decided after selecting a module specification, when

the coding phase begins. This will reinforce the fact that

answers to those issues have not already been given. The sec-

tion labelled "Hidden Information" in the appendix corresponds

to this. For instance, in specifying a text editor, we would

write in this section, that a decision to use array storage,

linked lists, or other alternatives to store the file being

edited, would have to be made when programming of this module

begins.

4) Specific references, such as texts and journals, if

available, should be given describing various implementations,

algorithms, and analyses of them for use when programming

begins.

5) As discussed in section 2.1, the author of the

specification must include all ways foreseeable that the

specificatinn might require mndificatinn to tailor it to

specific needs. The "Modifications" section in the examples

covers this.

I In addition to the documentation identified above, stnring

. L

IL'~

implementations would be highly desirable. Even for a module

which has a very simple specification, there may be many dif-

ferent implementations. For instance, Horowitz and Sahni (1976)

presents a specification of a symbol table; yet, that text

spends the majority of two chapters describing and analyzing

alternatives for implementation, such as linear search, binary

search, fibonacci search, various hashing techniques, trie in-

dexing, etc. Even a single operation can have many competing

algorithms; consider sorting with quicksort, heapsort, bub-

blesort, and insertion sort as alternative implementations.

As one considers larger and larger modules, the number of

possibilities could grow dramatically. For the kernel of an

operating system, one would have various hierarchical decomposi-

tions of the kernel (as a module) into many smaller modules.

For each of the smaller modules of each of the decompositions,

there would be alternatives in implementation. Some reprogram-

ming may be necessary, since the module specification may often-

times need slight modification due to varying environments in

which the module is to be used. This will require each program

stored to be very well structured and very well documented so

that it may be easily modified.

It should be technically feasible in the foreseeable future

to include with the functional specification of the module's

interface various hierarchical decompositions and corresponding

programs implementing the module. Cooprider (1979) presents a

technique for defining and maintaining a family of software sys-

tems. His Software Construction Facility (SCF) provides a

module interconnection language which defines module

_]

-12-

interconnections of entire systems, the shared aspects (and

differences) among versions of those systems, and the sequence

of operations for assembling versions of modules into a complete

system. Parts of the interpreter for SCF have been implemented.

This technique might be adapted to enable a family of implemen-

tatinns to be stored in the library even for large systems.

Such tools would be invaluable in a program support environment

(Buxton, 1980), since both system specification and system con-

struction would be greatly facilitated.

However, since the number of implementations that may need

to be stored for any module could be relatively large, develop-

ing a reasonably complete library including implementations as

well could take many years. However, the library would be of

great value to designers just with the module interface specifi-

cations as the alternative programs for each module are added

slowly.

2.4 Retrieval

Clearly, facilitating retrieval from the library is a cru-

cial issue for the library to succeed; however we have no con-

clusions here. It is not clear what assumptions one should make

regarding the designer. Should one assume the need will be

clearcut, such as needing a specification for a symbol table

that is suitable for a block-structured language? Or is it more

likely the case that the designer will have only a vague notion

of the need and will have to brnwse among many wide-ranging

classes of modules? When it is clear what assumptions can be

made about the designer, one can determine whether existing

retrieval techniques can be used or modified.

-13-

As a practical issue in retrieval, some modules returned

for a given request are likely to be rather distant from the

true need. The design of the data base of modules and of the

retrieval language should minimize this for effective use of the

library.

2.5 Correctness

Obviously, the specifications in the library should be

correct. A program is correct if it fulfills its specification.

One checks program correctness by comparing what the program

does against what the specification says it should do. What

then does one mean by correctness of a formal specification of a

module? By what standard is it deemed correct? Liskov and

Zilles (1975) views the specification process as a translation

from the concept in someone's mind of what a module should do to

a fnrmal specification. In general, it must conform to our

intent for the module.

One could define correctness of specifications in terms of

writing two different specifications and proving them

equivalent, but this misses the point of the difficulty of writ-

ing specifications. Rather, we prefer an informal notion of

correctness of a specification. To be correct, it must conform

to the intent for the module, it must be internally consistent,

it must leave no cases unspecified, and it should rule out im-

plementations that do not conform to the intent for the module.

Guttag and Horning (1978) presents formal definitions of con-

sistency and completeness. Though their definitions are given

for languages based on algebraic axioms, it is easy to define

similar notions for other types of specification languages.

-14-

Gerhart and Yelnwitz (1976) presents two examples of formal

specifications which were incorrect in that they left nut a cru-

cial feature; therefore, programs could be written that ful-

filled those specifications but which did not satisfy the

person's intent.

Three obvious techniques proved a significant aid to us in

checking the correctness of specifications.

1) Software tools should perform as many checks as

possible. Development of such tools is an active area of

research, and several examples exist. (e.g. Roubine and Robin-

son, 1976; and Musser, 1980). We used the SPECIAL specification

handler (Roubine and Robinson, 1976) which verifies syntactic

correctness and performs type checking on all expressions in

SPECIAL, a strongly typed language.

2) Peer review uncovers many errors, as well as offering

valuable comments for improving understandability. If one

creates dncumentatinn according to our guidelines in section 3,

the documentation will provide much detailed insight regarding

the intent nf the specification, and therefore will provide a

basis for judging correctness.

3) If one is not using an nperational specification

language, and if the software tools available cannot simulate

the module specified, then I quick implementation in a very high

level language will provide a concrete system for testing the

functional capabilities of the module in question. Irn general,

we wrote implementations in INTERLISP (Teitelman, 1975) for mur

SPECIAL specifications. This often uncovered specification

errors not detected by peer review or the specification handler.

i iq~~

-15-

The implementations, since they were in such a very high level

language, took remarkably little time, for using the very high

level language enabled us to trade performance charpcteristics

of the test module for programmer time. For instance, the final

module checked in this way took only two to three days for one

programmer to implement, even though it was a kernel providing

the functional capabilities of a character-oriented text editor.

Furthermore, we found significant regularity in the implementa-

tion of most types of expressions in SPECIAL, suggesting that

much of each implementation could be done automatically by a

software tool.

3. Understandability

Researchers in the area of formal module specifications and

abstract data types generally agree that they are difficult to

understand, though the degree of difficulty is argued.

The formal specification of a module must be understandable

if it is to achieve its purpose, for it acts as a contract

between designers and programming team, stating exactly what the

programming team's product must do (Parnas, 1977). Unless they

are understandable, 1) programmers will not know what the

module they are to implement is to do nor how to use other

modules, and 2) designers will not be able to detect design

errors nor easily confirm that their design satisfies user re-

quirements. Also, if one is to use a reference library of for-

mal specifications, they mus' be understandable, for if the

designer cannot understand the alternative specifications, how

can an intelligent choice be made among the alternatives? If

formal specifications of module interfaces are to become widely

-MO

-16-

used, they must be understandable.

In 3.1 we list several reasons why formal specifications

seem difficult to understand. In 3.2 we make concrete sugges-

tions, particularly regarding documentation of the library en-

tries, which will aid understandability.

3.1 Causes of lack of understandability

We have found several reasons for the difficulty of under-

standing formal specifications, particularly as compared to

natural language specificatinns. These observations arise pri-

marily frnm our study (described in section 1) of the English

and formal specifications of KSOS.

Two of the observations are well-known, dealing with the

nature of formal specification languages.

1) Formal specifications usually contain far more detail

than natural language ones do. Attention to detail, of course,

is requisite in specification. Liskov and Berzins (1977) agree,

stating on p. 13-5, "Rigorous informal specificatinns are prob-

ably just as difficult to construct as formal ones; informal

specifications appear easier to construct because they are usu-

ally incomplete."

2) The semantics of specification languages is often quite

different than programmers are used to. Formal specifications

of modules are to be implementation independent. Programming

languages are designed to define implementation detail. Thus,

the purpose and focus of attention of specification languages

are often quite different from programming languages. (The

operational specification languages are an exception, since they

have semantics similar to programming languages. However,

X'_ t~l- IJA Z

-17-

Guttag (1980) argues that they have additional handicaps for

understandability: the irrelevant implementation detail and the

need to infer the relations between functions at the interface.)

Observations 3 through 5 concern the nature of natural

language.

3) Natural language has myriads of concepts already defined

and familiar to us for succinctly stating what a module does,

but formal specifications do not as yet. For example, the con-

cepts of a sorted sequence, a pointer, a line of text, and a

shared segment of memory are all well-known and are referred to

without further explanation. (Yet, this is simultaneously a

serious drawback to natural language specifications, since the

notion raised in each person's mind may not be standard.) There

is no corresponding b of defined concepts which have been

taught us and which we have frequently used. Therefore, con-

cepts such as sorted order must be defined in the specification,

thus adding to what must be understood. To the reader of a

specification, English may appear like a very high level

language, whereas the formal language appears like an assembly

language without any significant collection of macros or

subroutines to draw on. Of course, a library of formal specifi-

cations would provide a body of past experience to study and use

as in natural language.

4) Natural language specifications can draw on known

concepts through analogy; no formal specifications allow this.

In the English description of KSOS, frequent analogies are made

to UNIX, both to explain features that are similar and to draw

specific contrasts; it seems to be a very effective tool there.

-18-

Another example is in Horowitz and Sahni (1976). After a

lengthy definition of an "ordered list", which is their term for

a finite sequence, they introduce stacks by stating (p.77), *A

stack is an ordered list in which all insertions and deletions

are made at one end, called the top." Some attempts have been

made to include analogy in artificial intelligence languages

(Bobrow and Winograd, 197?), but no attempt has been made in

specification languages.

5) A person's conq~ptual view of a module is often stated

in much different terms than that of present specification

languages. An exampI m4 this is a spatial view of modules.

The statement introducing a stack in the previous paragraph uses

the terms 'end' aLid tdp't clearly indicating a spatial view of

a stack, rather than a purely mathematical view in terms of

sequences. Hobbs (1977) states that many descriptions of algo-

rithms use a spatial view.

Observations 6 and 7 deal with the different organization

of information in formal specifications compared to natural

language.

6) English specifications often provide summaries of

detail, whereas formal ones have not, as yet, tending tn provide

detail in an isolated way. For instance, in the KSOS specifica-

tion (Ford Aerospace, 1978), the following summarizing statement

appears on page 9, "A SEID shall be returned as the result of

new object creations (i.e. K-create, K build segment,

K create-device, Kfork, and K spawn)." This summarizes several

things: 1) that the five functions listed are the ones that

create new objects and 2) that all of them return a SEID as a

-19-

value. In the formal specification of KSOS, for each function,

the type of the value returned, the inputs, input assumptions,

and side-effects are given with each of the functions individu-

ally. However, there is no summarizing of either of the two

facts as in the English; one must infer this information from

the particulars. Understanding seems to require a "cognitive

framework" around which to organize particulars; this can be

stated in English, but formal languages provide no such organiz-

ing conceptual view.

7) English specifications often explicitly state facts

which are only mathematically implied in formal specifications.

For instance, the English specification of the operation

K build segment in KSOS goes beyond the description of only that

function by spelling nut the sequence of other KSOS functions to

call to set up shared segments of execute-nnly code. While one

may be able to infer all of the steps from the formal specifica-

tion, the need to determine so much that is implicit decreases

the understandability of the formal specification. Similarly,

in the documentation of stackl (Appendix II), we state that the

pointer into a stack for arbitrary retrieval of elements must be

set initially by one of two operations. This is implied by the

formal specification but not stated explicitly. Algebraic ax-

ioms might appear not to have this problem, since they focus

attention on the relations between operations at the interface

of a module. Yet, examples specified using algebraic axioms can

lack understandability also by leaving crucial facts implicit.

For instance, a key to understanding the specification of a

stack in Guttag (1980) is recognizing that any time that the

* 4.

-2e-

stack is empty is equivalent to the time when it was first

created. The axioms do not state this explicitly, though one

could presumably add one or more axioms to do so. Rather, one

must first hypothesize the fact and then prove it true from the

axioms.

These observations lead us to our practical suggestinns for

writing more understandable formal specifications.

3.2 Practical Suggestions for Understandability

The first two suggestions come directly from programming

methodology. It is interesting that principles developed for

structured programming apply equally well to nonprocedural

specification languages of the axiomatic type. This means that

the principles deal not so much with managing control flow as

with managing detail.

1) Complex definitions should be broken a into short

definitions which can be analyzed and reviewed in a top-dnwn

way.

2) Long, descriptive mnemonics, such as

"max numberof stacks," are critical to understandability.

Regarding specification languages, we make the following

suggestion.

3) The specification language should provide a rich set of

primitive nbiects and operations. This will alleviate the lack

of previously defined concepts. For instance, suppose we are

specifying a module which among other things, sorts a sequence.
The definition would be much shorter and clearer if a concept

permutatinn(a,b) were already defined in the language or in a

library. For that matter, the concept mf a sorted sequence is

:"

-21-

so common, that its precise definition should be primitive to

the specification language. Unless the languages have a rich

set of structures for designers to draw on, the amount of detail

could be overwhelming.

Suggestions 4 through 8 deal with documentation. Though

English will be vague, incomplete, and ambiguous, it conveys a

toplevel view around which the complete, unambiguous, precise,

formal description can crystallize into understanding in the

reader's mind. Of course, the formal specification alone is the

arbiter of all questions about the module.

4) An English description of the purpose of a module and of

each function available at the interface of the module provides

A general notion or conceptualization for understanding the

formal specification. Such a high level description is essen-

tial documentation for management personnel.

5) The principle for deciding whether to include a comment

for a line of the formal specification is whether its purpose

and implications would be obvious to the average reader without

a comment. (We are indebted to David Crocker for stating this

criterion regarding our use of comments in the specifications we

had written.) Not only will following (4) and (5) make formal

specifications more understandable, but also following them

gives each reader of the specification the ability to verify

that every aspect and subformula of it corresponds to the

author's intent. This is an informal means of design valida-

tion; for a library of such specifications, the means is very

powerful since more and more designers will be reading and veri-

fying a specification as time goes by.

ZP*'.

-4 --'-T

-22-

6) Certain English constructions can be very difficult to

understand and should be avoided. The English specification of

KSOS is generally well-written and well-organized. However a

cryptic style of omitting words in defining variables or of

overusing parenthesized descriptions makes understanding diffi-

cult on certain points. An example exhibiting both features is

the following definition (p. 27 of Ford Aerospace, 1978) of an

exception condition of one of the functions: "unable to create

new process (possible information channel)". It is unclear to

us whether a new process cannot be created because of a possible

information channel or a new process which is a possible infnr-

matinn channel cannot be created or whether something altogether

different is intended. One can avoid these two features simply

by stating everything as complete thoughts in complete sen-

tences. For the example, this could be "A new process cannot be

created because of a possible information channel".

7) All but very small specifications need an index. To

pick an arbitrary figure, formal specifications whose complete

hierarchical definition is at least six pages need an index.

The parser for the formal specification can easily create this.

English ones at least twelve pages in length also need an index.

8) If an English description accompanies the formal

specification, as opposed to being embedded within the body of

the formal one as comments, then a cross-reference between the

two is needed. The cross-reference will not only aid understan-

dability by relating the two but will also provide an informal

means for people to check that the formal specification does

what its authors claim.

- g

-23-

These suggestions are not new ideas, but rather are merely

common sense. We have concluded that entries for a library of

formal module specifications should be prepared with so much

care for understandability that casting away the first attempt

at a specification to create a more understandable one is not

frowned upon. Peer review can be very valuable to check not

only the correctness of a specification but also its understan-

dability.

4. Conclusions

Our preliminary analysis shows that a library of formal

specifications is quite promising. It is particularly encourag-

ing that for elementary data structures and for text editors, a

handful of alternatives covered the major variations.

Several research topics are called for. One is a charac-

terizatinn of the kinds of requests a designer might have, so

that appropriate retrieval techniques could be developed.

Second is the implementation of software tnols that would make

the library part of a comprehensive design environment. A third

is development of software tools for integrating stored alterna-

tive implementations for a specification into a program support

environment (Buxton, 1980). A fourth is in the area of formal

specification languages. Since analogy plays such a useful role

in natural language specifications, a form of analogy in formal

specification languages would be a powerful aid in shortening

specifications without sacrificing detail.

-24-

Appendix I

Brief Description of SPECIAL

This brief introduction is provided because of the example

in Appendix 11; it is not intended as a comprehensive descrip-

tion. We will use all capitals when referring to reserved

words.

SPECIAL uses preconditions and postconditions to specify

each operation which is available at the interface of a module.

Operations are called FUNCTIONS. There are three types of func-

tions: OVFUN functions return a value and have side-effects.

OFUN functions have side-effects but return no value. VFUN

functions have no side-effects, but do return values.

For each function, preconditions are implied by the se-

quence of EXCEPTIONS. The exceptions are to be checked in the

order given; if any are true, the function exits without reacu-

tion, but with an indication of which exception is true. There-

fore, the precondition is that none of the exceptions are true.

For each function, postconditions are listed as EFFECTS.

There is no order to the effects; they are simply true state-

ments. For a function that returns a value, one of the effects

is, of course, the statement of the value returned. The "-"

symbol means equality, not assignment. Oftentimes one must dis-

tinguish between the old value that a second function returns

and the new value that it returns as a result of the side-

effects of the first functimn. One can refer tn the new value

by placing an apostrophe before the second function's name.

That is, the expression 'f(a)-f(a)+l in the effects of a

*.L~k~j

-25-

function g means that executing g changes f on the particular

value a; f will return a value one greater than what it used to

when called with a as its argument.

The arguments of a value-returning function are given by a

form such as

function-name (type arg,arg ; type arg ;...) -> type value.

The types of course declare the argument types and the type of

the value.

Sometimes it is convenient to define auxiliary functions

which are used in the specification but are not part of the

module's interface (and possibly will never appear in the imple-

mentation). These are defined as HIDDEN. Some VFUNS return a

value which is totally defined as an expression of other func-

tions; these may have a DERIVATION stating the expression rather

than an EFFECT defining the value returned. All other VFUNS

must have an initial value in their definition; this follows the

word INITIALLY.

Though the section FUNCTIONS is central to the specifica-

tion, there are several additional sections. If an expression

(or several closely related expressions) appear frequently in

the specification, one may state the expression in one place as

a DEFINITION as a means of abstraction. The form is

name (typed arguments) IS expression.

The name and argument list may be used anywhere that the expres-

sion should appear.

Though one can give type declarations with the formal argu-

ments themselves, one may declare a type associated with an

i , °

-26-

identifier throughout the specification. This is accomplished

using the DECLARATIONS section, which contains a line of the

form:

type identifierl,identifier2,...,identifiern.

One may define new types in terms of. thers using the TYPES

section. This has the form

user type: definition.

Defining a new user type as a DESIGNATOR is a means of getting a

set of names to uniquely identify objects. In our example the

type stack is defined as a designator, since we are specifying a

module to dynamically manage a set of stacks, and since a name

for each stack is necessary.

Oftentimes in defining a module, one needs a constant; yet,

that system constant may differ from one system (when actually

assembled) to another. One can declare such system constants in

the PARAMETERS section. In a specification, only its type need

be given.

Expressions include the normal arithmetic and boolean

types. A question mark represents the special value UNDEFINED.

Expressions may be quantified. For instance,

(EXISTS INTEGER j I c(j) : p(j))

means that there exists an integer j with c(j) being true such

that p(j) is true. The contents of a vector may be defined by

an expression such as

VECTOR(FOR m FROM initial TO stop : f(m)).

That expression defines a vector containing (stop-initial+l)

WWI

P1 P-'

-27-

elements. The first element of the vector is given by

f(initial), and the last by f(stop). The empty vector is writ-

ten as VECTORO. The ith element of a vector v is referred to

by v[i]. Only two operatinns of the expression language can be

performed on DESIGNATORS. One is the equality check. The

second is the operation NEW(d), which will give as a value nf a

new designator from the class d of designators.

Comments are enclosed by parentheses and preceded by a dol-

lar sign.

I"
-- . , , -.

-28-

Appendix II

The Library Entry for One Stack Module

Stackl

A. References

Chapters 3 and 4 of Fundamentals of Data Structures, by

Ellis Hnrowitz and Sartaj Sahni, Computer Science Press, Inc.,

1976 give three implementations of the basic features of a

stack. These would have tn be extended to allow the pointer

operations of module Stackl.

B. Hidden Infnrmatinn

Users of the module cannot answer the following questions:

Are the stacks implemented using an array or linked list? Do

all stacks share one array or does each have its own array? How

many wnrds, bytes, or bits are used per data element in the

stack?

C. Description (an aid tn understanding the definition, though
the definition is the arbitrator of all issues or questions
raised)

The fnllnwing two paragraphs mention features that this

module has in common with the module "stacks". The last para-

graph deals with features not found in the simpler alternative,

"stacks*.

This module manages any number of stacks up to the imple-

mentation, constant "maxstacks". The data structure represented

by a stack maintains a sequence of items. "Push" adds an item

to the sequence at one fixed end of the sequence. An item may

be remnved from the sequence at that same fixed end using "pop,"

-29-

which additinnally gives its value as the value of the procedure

call. One may obtain that value without removing the data item

from the sequence via "top". One can ask whether there are any

elements in the sequence or not, via "empty'. The maximum

length of any sequence is "maxsize". The data items are in-

tegers whose absolute value is bounded by "maxelement". New

stacks may be created and old stacks released via "create stacku

and "delete-stack".

The function "stack(s)" is HIDDEN. Therefore, it can never

be called, nor does it imply an implementation using arrays or

sequential memory. It merely indicates the effects of "push" or

"pop" on the sequence of items. The specification implies that

only the element most recently entered may be removed; this pro-

perty has led to the phrase "last-in-first-out" or LIFO.

One can retrieve values from any position in the sequence,

using "pointer", a HIDDEN function indicating which is the

current position. "Value pointer" retrieves the value at that

location. One can move the current position via any of the

operations "find element up", "find element down",

"move pointerup", "move pointerdown", "set pointer top", and

"setpointerbottom". Initially, for any stack, there is no

current position; the only way to initialize the current pnsi-
tion is with "set pointer_tnp" or "set pointer bottom". One may

delete all elements that were added after a certain item by

first positioning the pointer to the first element after the

item and by calling "upper delete".

D. Modifications

Stacks of course do not have to be sequences of integers.

-30-

The declarations which must be changed for REALs, CHARs, etc.

are marked by comments in the specification.

One may wish to retrieve any element in the sequence, re-

gardless of the pointer's current pnsition. For this, one may

add another function:

VFUN value(s;INTEGER j)->i;
S(random access read of data

items in stack)
EXCEPTIONS
'stack (s) -?;
j<l OR j>size(s);

DERIVATION
stack(s) (j];

$(Nnte that value(s;l) is the
first element added to the
sequence, not the last one.)

E. Alternatives

In some applications one may not need the notion of a

"current position" and retrieving the value there. Refer to the

specification "Stacks" for a module not having this feature.

* 4

7 a

-31-

MODULE stackl

TYPES

stack name: DESIGNATOR;
stack-cnntent: INTEGER; $(This is for a stack of integers. The

type specification must be changed for a
different type of data element)

DECLARATIONS

stack cnntent i;
stack-name s;
VECTOROF stack content q;
INTEGER p, k;
BOOLEAN b;

PARAMETERS

INTEGER maxsize, $(This is the maximum size of any stack)
maxstacks, $(This is the maximum number of stacks

permitted)
maxelement; $(This gives the maximum absolute value

storable in any stack. For a stack of data
type other than INTEGER, this must be
changed)

DEFINITIONS

INTEGER nstacks
IS CARDINALITY({ stack name s I stack(s) "- ? });

INTEGER size(s) IS LENGTH(stack(s));

FUNCTIONS

VFUN stack(s) -> q; $(This represents stack s)
HIDDEN;
INITIALLY

qa ?;

VFUN pointer(s) -> p; $(Pointer(s) defines a current element in
stack s)

HIDDEN;
INITIALLY

pa ?;

VFUN empty(s) -> b; $(The function returns true, if stack s
contains no elements, otherwise, false)

EXCEPTIONS
stack(s) -?;

DERIVATION
size(s) 0 6;

-32-

VFUN top(s) -> i;
$(This returns the value most recently pushed onto
stack s. Another derived VFUN, which is just the
macro size(s), might be added)

EXCEPTIONS
stack(s) =
empty(s);

DERIVATION
stack (s) [size (s)];

OFUN find element up(s; i);
$(The pointer for s is moved to the element, whose
value is i and which was the first such pushed onto s
after the current element)

EXCEPTIONS
stack(s) =
empty(s);
pointer(s) =
NOT(EXISTS INTEGER j I j > pointer(s) AND j <a size(s):

stack(s)])
EFFECTS

'pointer (s)
MIN({ INTEGER j I j > pointer(s) AND j <- size(s)

AND stack(s)[j] ")

OFUN find element down(s; i);
$(The pointer for stack s is set to the element, whose
value is i and which was the last such pushed onto s
before the current element)

EXCEPTIONS
stack(s) a

empty(s);
pointer(s) -

NOT(EXISTS INTEGER j I j >- I AND j <- pointer(s):
stacks(s)[i] i);

EFFECTS
'pointer (s)

= MAX({ INTEGER j I j >- 1 AND j <- pointer(s)
AND stack(s)(j] i });

OFUN move-pninterup(s; k);
$(The pointer for stack s is set to the element, which
was pushed onto the stack k elements after the current
element)

EXCEPTIONS
stack(s)
empty(s);
pointer(s) ?;k. <- 0;
size(s) < pointer(s) + k;

EFFECTS
'pointer(s) = pointer(s) + k;

-33-

OFUN move-pninter dnwn(s; k);
$(The pointer for s is set to the element, which was
pushed onto stack s, k elements before the current
element)

EXCEPTIONS
stack(s) - ?;
empty(s);
pointer(s) ?
k < 0;
k >= pointer(s);

EFFECTS
'pointer(s) - pointer(s) - k;

OFUN upper delete(s);
$(All elements which were pushed onto the stack s,
on or after the current element, get deleted. The
pointer for s will still point to the top of the stack,
unless upper delete empties the stack (in which case
the pointer becomes 7.))

EXCEPTIONS
stack(s) =
empty(s);
pointer(s) = ?;

EFFECTS
IF pointer(s) 1
THEN 'stack(s) - VECTOR() AND 'pointer(s) - ?
ELSE 'stack(s)

- VECTOR(FOR j FROM 1 TO pointer(s) - 1
: stack(s) (j])

AND 'pointer(s) - pointer(s) - 1;

OFUN set pninter top(s); $(The pointer for s is set to the ele-
ment most recently pushed onto stack s)

EXCEPTIONS
stack(s) a

empty(s);
EFFECTS

'pointer(s) = size(s);

OFUN set$p(inter_bottnm(s); The pointer is set to the element
least recently pushed onto stack s)

stack(s) =?

empty(s);
EFFECTS

'pninter(s) = 1;

VFUN value pointer(s) -> i; $(The value returned is the one the
pointer currently references)EXCEPTIONS

stack(s) *
empty(s);
pointer(s) = 7;

DERIVATION
stack (s) (pointer (s)] ;

L Li1=

-34-

OVFUN create-stack() -> s; $(This initializes a new stack
which will be named s.)

EXCEPTIONS
nstacks >= maxstacks;

EFFECTS
s - NEW(stack name);
'stack(s) a VECTORO;

OFUN delete stack(s); 5(This removes everything from stac..
Afterwards s cannot be referred to.)

EXCEPTIONS
stack(s) ?;

EFFECTS
'stack(s) = ?;

OFUN push(s; i);
$(Push adds i to stack s, making i the element returned
by top(s))

EXCEPTIONS
stack(s) ?;
size(s) a maxsize;
i < (- maxelement OR i > maxelement;

$(This must be changed for a data type other than
INTEGER)

EFFECTS
'stack(s)

= VECTOR(FOR j FROM 1 TO size(s) + 1
: IF j <- size(s) THEN stack(s)[j] ELSE i);

OVFUN pop(s) -> i;
$(This removes the item most recently pushed ontm s and
updates the pointer for s so that if it did point to the
element being popped, it will then point to the new top)

EXCEPTIONS
stack(s) - ?;
empty(s);

EFFECTS
i = top(s);
'stack (s)

= VECTOR(FOR j FROM I TO size(s) -1: stack(s)[j]);
IF pointer(s) a size(s)

THEN 'pointer(s) = pointer(s)- 1
ELSE 'pointer(s) - pointer(s);

END MODULE

L7

-35-

Acknnwledgements

Daniel Chester, David Crocker, Peter Freeman, Leon S. Levy,

Jim Neighbors, Linda Salsburg, and Robert Vollum made many valu-

able suggestinns in wading through early drafts of this. Linda

Salsburg wrote many of the specifications and quick implementa-

tions that influenced the conclusions here.

* J

• -1 *. -

-36-

References

Bnbrnw, Daniel G. and Terry Winograd, "An Overview of KRL, a
Knowledge Representation Language,u Cognitive Science, Vnl. 1,
#1, 1977, 3-46.

Buxton, J. N., "An Informal Bibliography on Programming Support
Environments," SIGPLAN Notices, Vol 15, Nn. 12, 1980, 17-30.

Cneprider, Lee W., "The Representatinn nf. Families of Software
Systems", Ph.D. Dissertation, Dept. of Computer Science,
Carnegie-Mellnn University, Pittsburgh, PA, 1979.

Ford Aerospace, "Secure Minicomputer Operating System (KSOS):
Computer Program Development Specifications (Type B-5)," Techni-
cal Report No. WDL-TR7932, Ford Aerospace & Communications Cor-
poration, Palo Alto, CA, 1978.

Gerhart, S. L. and L. Yelowitz, "Observations of Fallibility in
Applications of Modern Programming Methodologies", IEEE
Transactions on Software Engineering, Vol. SE-2, No. 3, 17T',
195-207.

Guttag, J., "Notes on Type Abstraction (Version 2)", IEEE
Transactions on Software Engineering, Vol. SE-6, No. 1, 1iTI13-23.

Guttag, John V., Ellis Horowitz, and David R. Musser, "Abstract
Data Types and Software Validation," CACM, 21, No. 12,
1048-1063, 1978.

Guttag, J. V. and J. J. Horning, "The Algebraic Specification of
Abstract Data Types", Acta Informatica, Vol. 10, 1978, 27-52.

Hobbs, Jerry R., "What the Nature of Natural Language Tells Us
About How to Make Natural-Language-Like Programming More Natur-
al", SIGPLAN Notices, Vol. 12, 8, 1977, 85-93.

Horowitz, Ellis and Sartaj Sahni, Fundamentals of Data
Structures, Woodland Hills, CA: Computer Science Press, Inc.,~1976.

Liskmv, Barbara H. and Valdis Berzins, "An Appraisal of Program
Specifications," Proceedings of the Conference on Research
Directions in Software Technl y,-Peter Wegner, Jack Dennis,
Michael Hammer, and DanielTichrnew (eds.), 1977.

Lisknv, B. H. and S. N. Zilles, "Specification Techniques for
Data Abstractions", IEEE Transactions on Software Engineering,
Vol. SE-l, No. 1, 197-7718

Musser, David R., "Abstract Data Type Specification in the
Affirm System," IEEE Transactions on Software Engineering, Vol.
SE-6, No. 1, 1980,-4-31.

National Institutes of Health, "SOS (An Advanced Line-Oriented

-1 " S ." d -4

-37-

Text Editor) User's Guide," Comp. Center Branch, Div. of Comput-
er Research & Technology, National Institutes of Health, Bethes-
da, MD, 1977.

Parnas, D. L., "On the Criteria to be Used in Decomposing Sys-
tems into Modules," CACM, Vol. 15, No. 12, December, 1972,
1053-1e58.

Parnas, D. L., "On the Design and Development of Program Fami-
lies," IEEE Transactions on Software Engineering, Vol. SE-2, No.
1, March 976, 1-8.

Parnas, David L., "The Use of Precise Specifications in the
Development of Software," Information Processing 77, B. Gil-
christ, (ed.), North-Holland Publishing Company, New York, 1977.

Robinson, Lawrence, Karl N. Levitt, Peter G. Neumann, and Ashok
R. Saxena, "A Formal Methodology for the Design of Operating
System Software," Current Trends in Programming Methdoln,
Volume 1, Software SpeciTaon-an Dn, PretceHa
Inc., Englewood Ciffs, NJ, 1977.

Roubine, Olivier and Lawrence Robinson, SPECIAL Reference Manu-
al, Technical Report CSG-45, Stanford Research Institute, Menlo
Park, CA, August, 1976.

Teitelman, Warren, "Interlisp Reference Manual," Xerox Palo Alto
Research Center, Palo Alto, CA, 1975.

Weischedel, Ralph M., "A Tutorial Example on Writing Understand-
able Formal Specifications of Software Modules: An Extended
Abstract", Proceedings of Micro-Delcon '79, 1979, 104-112.

'I

